平行四边形的面积教案
作为一位杰出的老师,通常需要用到教案来辅助教学,教案是教学蓝图,可以有效提高教学效率。那么什么样的教案才是好的呢?下面是小编精心整理的平行四边形的面积教案,欢迎大家借鉴与参考,希望对大家有所帮助。
平行四边形的面积教案1教学内容:
义务教育六年制小学《数学》第九册P64-P66
教学目的:
1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
4、培养学生自主学习的能力。
教学重点:
掌握平行四边形面积公式。
教学难点:
平行四边形面积公式的推导过程。
教具、学具准备:
1、多媒体计算机及课件;
2、投影仪;
3、硬纸板做成的可拉动的长方形框架;
4、每个学生5张平行四边形硬纸片及剪刀一把。
教学过程:
一、复习导入:
1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)
2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)
3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:
1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?
2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?
3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、引导探求:
(一)、复习铺垫:
1、什么图形是平行四边形呢?
2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
(二)、推导公式:
1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?
2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。
4、学生实验操作,教师巡视指导。
5、学生交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、微机演示各种转化方法。
6、归纳总结规律:
沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、剪样成的图形面积怎样计算?得出:
因为:平行四边形的面积=长方形的面积=长×宽=底×高
所以:平行四边形的面积=底×高
(板书平行四边形面积推导过程)
7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。
四、巩固练习:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
2、练习:
⑴、(微机显示例一)求平行四边形的面积
⑵、判断题(微机显示,强调高是底边上的高)
⑶、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)
⑷、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。
五、问答总结:
1、通过这节课的学习,你学到了哪些知识?
2、平行四边形面积的计算公式是什么?
3、平行四边形面积公式是如何推导得出的?
六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1
平行四边形的面积教案2【设计理念】
本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容
【教学内容】
《义务教育教科书》人教版数学课本五年级上册87——88页。
【教材、学情分析】
平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。
学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。
【教学目标】 ……此处隐藏17032个字……教科书数学》五年级上册第80、81页的内容。
教学目标:
1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学过程:
一、情境激趣
1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。
2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!
3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。
提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?
4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)
二、自主探究
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:平行四边形的面积=底×高
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
A.形状变了,面积没变。
B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、看书质疑
四、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
五、巩固运用
1.练习十五第1题,让学生独立完成后反馈答案。
2.你会计算下面平行四边形的面积吗?
3.你能想办法求出下面平行四边形的面积吗?
4.练习十五第3题。
六、全课小结(略)
平行四边形的面积教案15教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。